THE NUCLEOPHILIC ATTACK OF A VINYL-HALO-PHOSPHINE BY A TERTIARY AMINE : A NEW ACCESS TO PHOSPHAALKENES

François MERCIER and François MATHEY

Laboratoire de Chimie du Phosphore et des Métaux de Transition, D.C.P.H. Ecole Polytechnique, 91128 PALAISEAU Cedex (France)

<u>Summary</u>: The reaction of DABCO with (2,4,6-tris-tertiobutylphenyl)(vinyl) halo phosphine (X= C1, Br) yields the corresponding 1-(2,4,6-tris-tertiobutylphenyl)-2-ammoniomethyl phosphaethene via a SN2'-like attack at the vinylic CH₂.

Our recent work on the chemistry of η ³-1-phosphaallyl complexes[1] and on the thermal isomerisation of secondary vinylphosphines into the corresponding phosphaalkenes [2] has suggested some parallelism between the chemical behaviours of the allyl and 1-phosphaallyl groups. We wish to report hereafter on a new experiment which further strengthens this parallelism. The starting vinyl-halophosphine <u>1</u> [3] was obtained as a <u>ca</u> 50/50 mixture of chloro- and

The starting vinyl-halophosphine $1 \begin{bmatrix} 3 \end{bmatrix}$ was obtained as a <u>ca</u> 50/50 mixture of chloro- and bromo-derivatives according to eq 1 :

1: X = C1, Br ; yield ca 65%

When allowed to react with a stoichiometric amount of a nucleophilic amine such as DABCO, $\underline{1}$ is converted into an ammonium substituted phosphaalkene such as $\underline{2}$ (eq 2) :

The ammonium salt 2 [4] was precipitated and washed twice with diethylether. Then, it was recrystallized in a 1/1 mixture of CHCl₃ and Et₂O (45% yield of pure product). According to the elemental analysis, the counterion in 2 is almost exclusively Br^{θ} . This observation suggests that the reaction preferentially takes place with the bromo-vinylphosphine. A classical SN2' mechanism could explain this selectivity. Anyhow, both the higher strength of the C-N bond by comparison with the P-N bond and the steric bulk of the supermessityl substituent at phosphorus favour the attack of the tertiary amine at the β -vinylic carbon. As expected, 2 reacts with sodium methylate at 60°C in methanol solution (eq 3). The vinylphosphinite 3 [5] was purified by chromatography on silica gel with hexane/CH₂Cl₂ 50/50 as eluent. A SN2' mechanism is very likely once again involved. The initial attack of MeO ^{θ} at phosphorus is probably driven by the high oxophilicity of phosphorus.

References and Notes

- F. Mercier, J. Fischer, F. Mathey, <u>Angew. Chem., Int. Ed. Engl.</u>, <u>25</u>, 357 (1986); F. Mercier, C. Hugel-Le Goff, F. Mathey, <u>Organometallics</u>, <u>7</u>, 955 (1988); C. Hugel-Le Goff, F. Mercier, L. Ricard, F. Mathey, <u>J. Organometal. Chem.</u>, <u>363</u>, 325 (1989).
- 2. F. Mercier, C. Hugel-Le Goff, F. Mathey, <u>Tetrahedron Lett.</u>, <u>30</u>, 2397 (1989).
- 3. <u>1</u>: ³¹P NMR (CDCl₃): δ + 67.9 (Cl), + 64.3 (Br); ¹H NMR (CDCl₃): δ1.31 (s, 9H, Bu^t para),1.55 and 1.61 (2s, 18H, Bu^t ortho); mass spectrum (70eV): m/z (relative intensity) 384 [M^t + 1 (Br), 3%], 339 [M^t (Cl), 6%], 303 (M^t-X, 100%).
- 4. $\underline{2}$: ${}^{31}P$ NMR (CDCl₃): δ + 313.6 (vs H₃PO₄); ${}^{1}H$ NMR (CDCl₃): δ 1.34 (s, 9H, Bu^t para), 1.47 (s, 18H, Bu^t ortho), 3.26 (broad t, ${}^{3}J$ (H-H) 6.4 Hz, 6H, CH₂N), 3.71 (broad t., 6H, CH₂N⁺), 4.60 (dd, ${}^{3}J$ (H-P) 17.7 Hz, ${}^{3}J$ (H-H) 9.3 Hz, 2H, CH₂C=), 7.06 (dt, ${}^{2}J$ (H-P) 23.7 Hz, 1H, HC=P), 7.41 (s, 2H, H meta); ${}^{13}C$ NMR (CDCl₃): δ 31.06 (s, Me para), 33.82 and 33.92 (2s, Me ortho), 34.67 (s, Bu^t C para), 37.74 (s, Bu^t C ortho), 45.27 (s, CH₂N), 51.83 (s, CH₂N⁺), 65.71 (d, ${}^{2}J$ (C-P) 40.6 Hz, CH₂-C=), 121.8 (s, CH meta), 135.95 (d, ${}^{1}J$ (C-P) 55.4 Hz,C ipso), 150.39 (s, C para), 153.29 (s, C ortho), 156.48 (d, ${}^{1}J$ (C-P) 40.0 Hz, C=P). The compound crystallizes with one molecule of chloroform. Anal. Calcd for C₂₇H₄₅ Br Cl₃N₂P : C, 52.74 ; H, 7.37 ; N, 4.55 ; Br, 12.99 ; Cl, 17.29. Found: C, 52.77 ; H, 7.47 ; N, 4.80 ; Br, 10.51 ; Cl, 16.99. 5. $\underline{3}$: ${}^{31}P$ NMR (CDCl₃) : δ + 109.8 ; ${}^{1}H$ NMR (CDCl₃): δ 1.31 (s, 9H, Bu^t para), 1.50 (s, 18H, Bu^t ortho), 3.65 (d, ${}^{3}J$ (H-P) 14.9 Hz, 3H, MeO), 4.80 (m, 1H, CH₂), 5.40 (m, 1H, CH₂), 6.50 (m,
- 1H, CHP) 7.41 and 7.42 (2s, 2H, CH ar.); ¹³C NMR (CDCl₃): δ 31.30 (s, Me para), 34.00 and 34.18 (2s, Me ortho), 35.00 (s, Bu^t C para), 39.02 (s, Bu^t C ortho), 57.71 (d, ²J(C-P) 31.2 Hz, MeO), 121.27 (d, ²J(C-P) 18.4 Hz, CH₂=), 122.59 and 122.71 (2s, C meta), 135.60 (d, ¹J(C-P) 53.9 Hz, C ipso), 144.84 (d, ¹J(C-P) 26.5 Hz, =CH-P), 150.50 (s, C para), 156.12 and 156.40 (C ortho); mass spectrum (EI, 70eV) : m/z 334 (M⁺, 19%), 319 (M⁺-CH₃, 62%), 278 (100%).

(Received in France 12 July 1989)